
WEB APPLICATION
PENTESTING
PRACTICAL METHODOLOGY FOR FINDING

BUGS AND VULNERABILITIES

CHRIS DALE

•COO, PRINCIPAL AND FOUNDER AT RIVER SECURITY

•PRINCIPAL INSTRUCTOR AT SANS

•CO-AUTHOR – CYBER DECEPTION, ATTACK DETECTION,
DISRUPTION AND ACTIVE DEFENSE

•SHORT SUMMARY:

I SHOW HOW CRIMINALS BREAK-IN,
AND I HELP THROW THEM BACK OUT…

GCIH GIAC Certified Incident Handler

GPEN GIAC Certified Penetration Tester

GSLC GIAC Security Leadership

GIAC GIAC Mobile Device Security Analyst

GDAT GIAC Defending Advanced Adversaries

GCTI GIAC Cyber Threat Intelligence

GCFA GIAC Certified Forensic Analyst

GXIH GIAC Experienced Incident Handler

GXPT GIAC Experience Penetration Tester

GSP GIAC Security Professional

CERTS

WHY THIS TALK?

• WEB IS UBIQUITOUS

• CONSIDERED BORING BY MANY

• NOT THE HIGHEST OF LEARNING CURVES.

• YOU CAN PROVIDE VALUE FAST

• DUNNING KRUGER EFFECT

• NOT JUST CHECKLIST, I.E. FRAMEWORKS ,
OWASP TOP10 , ETC.

• WEB IS REALLY A GREAT PLACE TO RESEARCH,
BOUNTY AND GIVE YOUR CUSTOMERS VALUE.

PORTSWIGGER TOP 10 ATTACKS

• 1 - ACCOUNT HIJACKING USING DIRTY DANCING IN

SIGN-IN OAUTH-FLOWS

• 2 - BROWSER-POWERED DESYNC ATTACKS: A NEW

FRONTIER IN HTTP REQUEST SMUGGLING

• 3 - ZIMBRA EMAIL - STEALING CLEAR-TEXT

CREDENTIALS VIA MEMCACHE INJECTION

• 4 - HACKING THE CLOUD WITH SAML

• 5 - BYPASSING .NET SERIALIZATION BINDERS

• 6 - MAKING HTTP HEADER INJECTION CRITICAL

VIA RESPONSE QUEUE POISONING

• 7 - WORLDWIDE SERVER-SIDE CACHE POISONING

ON ALL AKAMAI EDGE NODES

• 8 - PSYCHIC SIGNATURES IN JAVA

• 9 - PRACTICAL CLIENT-SIDE PATH-TRAVERSAL

ATTACKS

• 10 - EXPLOITING WEB3'S HIDDEN ATTACK

SURFACE: UNIVERSAL XSS ON NETLIFY'S NEXT.JS

LIBRARY

https://portswigger.net/research/top-10-web-hacking-techniques-of-2022

Burp Suite – Tool of Choice

 Defacto tool by pentester

 Strong fuzzing capabilities

 Extension support

 Very flexible and robust

 Well developed scanner

 Spidering engine with decent
SPA support

 Cheat sheet:
https://www.sans.org/posters
/burp-suite-cheat-sheet/

Burp Extensions

 Active Scan ++

 Backslash Powered Scanner

 Param Miner

 Taborator

 Turbo Intruder

 Autorize

 Software Vulnerability Scanner

 Collaborator Everywhere

Must have

Nice to have

Honorable Mentions
 Freddy, deserialization scanner

 GraphQL raider

 JSON Web Tokens

 NTLM Challenge Decoder

 Retire.js

 Additional Scanner Checks

Finding Vulnerabilities Process Pyramid
F u l l y t e s t t h e s c o p e , e v e r y s c r i p t a n d i n p u t

Reliable and consistent testing is important, and not relying
on a single individuals' skills and efforts to complete a
penetration test helps ensure the highest levels of standards.

Producing High Value Penetration Tests

Penetration Testing is a team effort, not an individual
effort. Utilize a team to maximize the penetration test
efforts.

Team Based Effort

Leave no stone untouched. Many vulnerabilities are
found in the "paths least travelled". Fully explore!

Thoroughly Map Attack Surface

Document findings, process, discrepancies and
hypothesis. It will be useful now and later.

Reporting

A team is stronger. Produce hypothesis to uncover
potential attacks across all layers. Strengthen the team
knowledge by working as one.

Hypothesis and Knowledge Sharing

Fuzzing

Business
Process and
Logic Flaws

Tools

Frameworks

Hypothesis & Test Cases

Content Discovery

Platform
Distinctions

• A web application may
have several “platform
distinctions”
• Load-balancers may

balance on an endpoint
• Reverse proxies does the

same

• Do your best if the target
is split into different
platforms
• Each platform distinction

should receive full test
process

Content Discovery

Goal: Find
Everything

i. Map Browsable Attack Surface

ii. Find Unlinked Content & Params

iii. Repeat for each `Platform
Distinctions` of the application

Content Discovery

Leave no stone unturned. Many vulnerabilities are found in the "paths
least travelled". Fully explore!

Map Browsable
Attack Surface

Browse the entire application, discover all browsable
content

Click
Use
Learn

Use the Burp Suite Crawl feature on the top level of the
application.

Has decent support for SPA as of Burp Suite v. >2
Helps build a complete sitemap
Use most complete configuration, which is the slowest

For JavaScript, extract file paths and references.
CyberChef extract file paths module
GAP Burp Plugin
JSParser

Content Discovery

Find Unlinked
Content

• Fuzz verbs and functionality, find more content
• For functionality such as e.g. /?action=showUser&id=123 , try fuzzing the verb (i.e.

show) with words like:
• Add, delete, update and so on… i.e. making action=addUser, etc.

• Useful wordlists inside of Burp:
• Server-side variable names

• Form Field values

• Form Field names

Content Discovery

Find Unlinked
Content

• Use and create wordlists
based on target
functionality
• Example: A website

relevant to PDF’s

• grep -aEirh
'^pdf.*' * | sort |
uniq

Content Discovery

Verb Example
/?page=872

Content Discovery

Content
Discovery

Content Discovery

OpenAPI / Swagger Specs

• If we can cheat, we should!

• Paints a picture of what the developers intended to include

• Still requires us to do content discovery

Unlinked
Parameters

• Discover if there are any unlinked
parameters
• Particularly important on all

Platform Distinctions

• Any change based on a new
parameter is interesting

• GET, POST, Cookies, Headers

• Headers might bypass
authentication

• Might find attack surface

• Param miner extension!

Content Discovery

OSINT to Support
• WaybackRobots.py

• WaybackURLs.py

• Dorking

• Other OSINT sources

Content Discovery

Fuzzing
Find bytes and input producing

different/unexpected results

Fuzzing Bytes 101

1. For-each script and input
2. Send their script to repeater / play with it in browser

• Determine properly how the functionality works and try
related attack

3. Send to intruder and fuzz
• %00 to %FF

• URL Decode targets Middleware
• URL Encode targets App

• Anomalies, discrepancies, interesting results?
• Create Hypothesis
• Work with team if you cannot produce hypothesis

• Use wordlists

4. Utilize vulnerability scanner
• Backslash Powered Scanner and other extensions will also aid

here.

5. Scanner results? Update methodology

Fuzzing is not one size fits all, our goal is to produce interesting results. Be creative!

Attack Types

• Position – This is a variable where you want to inject a payload of a
certain kind, e.g. a word a wordlist.

• Sniper – Loop a payload through all positions

• Cluster Bomb – Loop through multiple payloads through all positions,
like nested for loops.

• Battering Jam – Push through one payload into each position at the
same time.

• Pitch Fork – Apply a set of payloads for each position which is iterated
at the same time

Asdf.aspx produces 500
server error

Bytes Examples
Payload here

Second example:
A Single Character

Occam’s Razor
Among competing hypothesis, the one with the fewest hypothesis is often correct.

This Photo by Unknown Author is licensed under CC BY

Rabbit Holes

https://blog.aniljohn.com/2013/09/here-be-dragons-ssn-and-federation-user-enrollment.html
https://creativecommons.org/licenses/by/3.0/

Avoiding Rabbit
Holes

• A rabbit hole is: A potential exploit condition which will take up a lot
of time to research.

• Prioritize “width” rather than “depth”
• Focus on rabbit holes with the time left after the scope is covered

• Structure your work and scope
• Duration of the engagement vs. How much time do we have left?

• Hours spent – Work left
• Each hour spent impacts the total value spent on the engagement

• How many scripts, functions and other things do we have left to test?

• Do we need to get someone else to help us conclude a rabbit hole?

• Large applications: split into smaller parts to help team prioritize

Using Wordlists

With our fuzzing efforts, wordlists can help produce
valuable results, e.g., anomalies in cases of:

• Different HTML or HTTP results
• Timing differences
• External server interaction

Use wordlists that help you target different
technology and hypothesis.

Great starting points:
• SecLists: https://github.com/danielmiessler/SecLists
• AssetNote: https://wordlists.assetnote.io/

Take time to learn what these wordlists contain;
it will help you learn when to apply them

• Which wordlists requires placeholders?
• Which ones are already URL encoded?

Use Collaborator
with placeholders
- Many wordlists rely on external server interaction.

- Burp Suite has a built in external interaction monitor

- Taborator plugin makes for quick access to Collaborator
- Or use interactsh https://github.com/projectdiscovery/interactsh

Building Good
Wordlists

Roy Solberg's CeWLer
Filter away stop-words

Burp Suite GAP extension

URL Shorteners bruteforce results

http_disallowed_entries_CiscoTopMillion

Wiki’s are a good source of wordlist

Scan with plugins
and web app

 Get a second opinion
from your vulnerability
scanner

In this case, Burp Suite
is tasked to scan the
defined insert point
§project§

Does scanner find
something?

Revisit methodology and ask
yourself how you could
improve it

Review Logger
500 errors

 Review the request log

 Look for 500 Error
Messages

 There could be
potential for exploitation

 Once done, clear the log

Hypothesis and test cases
Be creative and utilize your team.

Test and conclude hypothesizes

Utilize the Team
 Pen Testing is a team effort, not an individual effort.

 Utilize a team to maximize the penetration test efforts.

 Ensure you can work together on tackling breaking the application

 If you can’t properly explain and create valid hypothesis
 Ask your team

 Work together (knowledge transfer)

 Source your rabbit holes to team members

Hypothesis
I am seeing that : > < and * are influencing file

reads of the file server. I want to explore Local File
Inclusion, SSRF and similar kinds of vulnerabilities

Business Process and
Logic Flaws

With extensive knowledge of the target, explore
process and logic flaws

Take a Step Back

• Finding bugs and vulnerabilities often require you to think outside the
box

• Work with team members – Explain the system to them

• Try produce hypothesis and test cases based on a short presentation
by the primary tester

• Each system have different flows, attack vectors and challenges; brain
storm a little bit and you drastically increase the odds of success.

Authentication
Example

• Technically a part of discovery / scoping / planning
• Pentesting is not a one-size fits all
• Work with the customer to find THEIR needs

• Applications typically have different privileges levels:
• Super Admin
• Customer admin
• User
• Unauthenticated

• Regardless of the scope you have worked through
with your customer, ask for super admin
• Map out everything as super admin, you don’t have to

pentest it, but build overview of functionality

• Make sure customer admin, user and
unauthenticated is secure, and provides segregation

Admin

• Content Discover

• Map out
everything

Regular User

• Privilege
Escalate

• Segregation

Un-
authenticated

• Test all
endpoints

• Test all functions

Map Out
Application Flows

• Mapping out the flow of behavior

• Draw.io / Diagrams.net is easy quick win

• Helps look at things from a bird eye perspective

• Map out requests and response

• Example flows:
• Purchasing

• Authentication

• Impersonation / privilege escalation

• Password reset flow

• …

Frameworks

Frameworks
Compliance and pentest support. Utilize

frameworks.

Minimum Viable
Penetration Testing

Define an absolute minimum of activity to perform on a
certain system or piece of technology or application.

• Allow experience from previous tests to be reused

• A way to support pentesters. Don’t start from scratch.
• Your own refined Google / Hacktricks.xyz / etc.

• Not training on concepts, but simple bullets of what
needs to be done

• Make pentester accountable to:
• Check the things which needs to be checked

• Ask team for help when there are interesting anomalies

• There are application and technology specific MVP’s

Tech and Application
Specific MVP

Middleware

Web server

Managed
code

Backends

Attack The Stack Tech & App Specific MVP Testing Frameworks

ASVS – Application
Security Verification
Standard
WSTG – Web Security
Testing Guide
…

IIS Short Name
Scanning

Ideas to Help Find Content

• Build and test with wordlist
grep -aEirh ‘^metada.*' * | sort | uniq

• Intruder: metada§POSITION§.zip
• Settings: bruteforce 1-3 a-z 0-9

• Dork it:
• inurl: metada
• Site: target.com

• Google BigQuery
• Wayback Machine

WordPress Enumeration

When You Don’t Have
MVP

• Create one
• It is minimum viable

• A starting point is better than nothing

• Dedicate days before the
engagement to:
• Build

• Set-up

• Configure

• Break & Hack

• Create CTF challenges ;)

• Create foundations for future
hypothesis

Tools

Tools
Vulnerability scanners, application and

technology specific tools

Tools are plentiful
Go find them, review them, or build them yourself. Tools are useful for assisting and
automating, but always remember to seek to understand, not just to solve. Don’t
run the tools without understanding how they work; understand what they’re
trying to achieve and identify tool failure.

Finally, the most important point
How do we make an actual long term impact with security testing?

With Traditional
Penetration Testing –
Are we playing the
same game as
attackers?

Continuity

• To effectively prevent threat actors from exploiting new
vulnerabilities, continuity is imperative

• Trigger penetration testing when changes happen

• Example:
• Status code changes: 401 Unauthorized to 200 OK

• Swagger.json with new definitions

• Crawling results with new dynamic scripts

• CTI with new hacking techniques

https://into.bio/chrisdale & https://into.bio/rivsec

Download slides here!

Twitter – https://twitter.com/ChrisADale

LinkedIn – https://www.linkedin.com/in/chrisad/

Fighting Cyber Crime – https://riversecurity.eu

https://into.bio/chrisdale
https://into.bio/rivsec

	Default Section
	Slide 1: Web Application Pentesting
	Slide 2: Chris Dale
	Slide 3: Why This Talk?
	Slide 4: Portswigger Top 10 Attacks
	Slide 5: Burp Suite – Tool of Choice
	Slide 6: Burp Extensions
	Slide 7
	Slide 8: Platform Distinctions
	Slide 9: Goal: Find Everything
	Slide 10: Map Browsable Attack Surface
	Slide 11: Find Unlinked Content
	Slide 12: Find Unlinked Content
	Slide 13: Verb Example /?page=872

	Untitled Section
	Slide 14: Content Discovery
	Slide 15: OpenAPI / Swagger Specs
	Slide 16: Unlinked Parameters
	Slide 17: OSINT to Support
	Slide 18: Fuzzing
	Slide 19: Fuzzing Bytes 101
	Slide 20
	Slide 21: Attack Types
	Slide 22: Asdf.aspx produces 500 server error
	Slide 23: Bytes Examples
	Slide 24
	Slide 25: Second example: A Single Character
	Slide 26: Occam’s Razor
	Slide 27: Avoiding Rabbit Holes
	Slide 28: Using Wordlists
	Slide 29: Use Collaborator with placeholders
	Slide 30: Building Good Wordlists
	Slide 31: Scan with plugins and web app
	Slide 32: Review Logger 500 errors
	Slide 33: Hypothesis and test cases
	Slide 34: Utilize the Team
	Slide 35: Business Process and Logic Flaws
	Slide 36: Take a Step Back
	Slide 37: Authentication Example
	Slide 38: Map Out Application Flows
	Slide 39: Frameworks
	Slide 40: Minimum Viable Penetration Testing
	Slide 41: Tech and Application Specific MVP
	Slide 42: IIS Short Name Scanning
	Slide 43: Ideas to Help Find Content
	Slide 44: WordPress Enumeration
	Slide 45: When You Don’t Have MVP
	Slide 46: Tools
	Slide 47: Tools are plentiful
	Slide 48: Finally, the most important point
	Slide 49: With Traditional Penetration Testing – Are we playing the same game as attackers?
	Slide 50: Continuity
	Slide 51

