
Enhancing Security Testing for QA 

Professionals 

Copyright River Security. All rights reserved.



WHO AM I?

COO, PRINCIPAL AND FOUNDER AT RIVER SECURITY

PRINCIPAL INSTRUCTOR AT SANS

IN SHORT:

I SHOW HOW CRIMINALS BREAK-IN,

AND I HELP THROW THEM BACK OUT… 

GCIH   GIAC Certified Incident Handler

GPEN   GIAC Certified Penetration Tester

GSLC   GIAC Security Leadership

GMOB   GIAC Mobile Device Security Analyst

GDAT  GIAC Defending Advanced Adversaries 

GCTI GIAC Cyber Threat Intelligence

GCFA GIAC Certified Forensic Analyst

GXPT GIAC Certified Penetration Tester



Agenda
Introduction to IT Security 
Testing
Why Security Testing Matters 
The Evolving Threat Landscape

Understanding Security 
Vulnerabilities 
Common Vulnerabilities and their 
implications 
Real world breaches and lessons learned

Principles of Security 
Testing
Tools and techniques suited for 
testers 
Black box vs. White box testing

Other Important Aspects
Best Practices
Procedures and checklists

Copyright © River Security. All rights reserved.



Setting the Stage with Cyber 
Crime – Who are we up 

against?
An interesting view on the threat actors, who they are and the money 

the make. 





















Cyber Crime and Threat Actors

• High returns for low efforts
• You can target thousands of victims with little 

effort

• Payments often happen instantly

• Money laundering
• Cryptocurrency 

• Tumblers

• Mules

• Personal Data - How much are we worth? 
• Loose once and it is potential permanent 

damage for victims 

• Easy to stay anonymous and not get caught



Hacking is BIG MONEY



Personal Data
How much are we worth?

Our personal data for sale. 













Within the Same Week of Hire



Credits: Brian Krebs



Attacks for Fun and Profit

• Attackers are figuring out how to make money from their malicious code
• Ask law enforcement: If there's money in a given crime, we'll see much 

more of it
• How to make money on malicious code:

• Cryptocurrency miners
• Spam and web-based advertising
• Phishing: Email, phone, and targeted (spear) phishing
• Denial-of-Service extortion
• Keystroke loggers stealing financial information
• Rent out armies of infected systems for all the above
• RAM scrapers pulling CC numbers from POS terminals

• Ransomware, ransomware, ransomware



HOW MUCH IS 
YOUR 

ORGANIZATION 
WORTH? 

How much would 
someone pay to 
get access to your 
organization? 







Darknet Post 1/2



Darknet Post 2/2



A Reminder – This is 14 Years Ago

35
30

25
20

12

18

25

37

50 49 48 47

8 9 10 10

01/01/2010 01/01/2015 01/01/2020 01/01/2025

Regular Crime Cyber Crime Budget Regular Budget Cybe



Introduction to 
Security Testing



Hackers 
Manifesto

As a hacker, I am driven by a relentless curiosity and a desire to 
uncover the hidden truths that lie just beyond our reach. I know 
that there is always a way to penetrate even the most seemingly 
impenetrable systems. I approach every challenge with sharp 
senses, a keen intellect, and an open mind, ready to peel away 
layer after layer of complexity in pursuit of the answers I seek.

I understand that the work of a hacker is not magic, but rather 
the product of hard-won knowledge and a deep understanding of 
the systems we seek to exploit. I will not be deterred by initial 
failures, but will instead channel that energy into building my 
knowledge and experience, all the while observing the problem 
at hand and digging deeper than anyone else to find a way in.

To be a successful hacker is not easy, but I am committed to this 
path and will persist in the face of any obstacle. I will not assume 
that there is nothing to be found but will always maintain a sense 
of excitement and possibility, knowing that there is always 
something more to discover. I am hacker, and I will not rest until I 
have uncovered every secret and unlocked every door.



What is 
the Goal of 

Testing?

Verify 
functionality

Find bugs 
before 

customers do

Discover 
potential and 
real security 

vulnerabilities

Quality 
Assurance



Always Keep In Mind



Primer on Web
• Web is ubiquitous • It is an essential piece of 

technology to understand 

Web1.0
The Read Only Web 

Web 2.0
The Dynamic and Interactive Web 

Web 3.0 
Read-Write-Execute Web 



Typically It’s Not Just A
Application

There is a front-end 

API typically connected 

Back-end supporting data read and storage

Caching / CDN 
/ Etc.

WAF / 
Interception

Web Server / 
Functionality 

AP

Backend and 
Databases



Components in Play 

HTTP – For transporting between client and server 

HTML – Mark up for displaying data 

CSS – Mark up for styling 

JavaScript – Programming to make it dynamic

Web Servers (e.g., Apache, Nginx) – Serve website content

APIs (RESTful, GraphQL) – Interface for interacting with other 
software

SSL/TLS – Secure data transmission

Frameworks & Libraries (e.g., React, Angular, Vue for frontend; 
Node.js, Django for backend) – Simplify development



Minimum Viable 
Penetration Testing

Define an absolute minimum of activity to perform on a 
certain system or piece of technology or application.

• Allow experience from previous tests to be reused 

• A way to support pentesters. Don’t start from scratch. 
• Your own refined Google / Hacktricks.xyz / etc. 

• Not training on concepts, but simple bullets of what 
needs to be done

• Make pentester accountable to: 
• Check the things which needs to be checked

• Ask team for help when there are interesting anomalies

• There are application and technology specific MVP’s  



Tech and Application 
Specific MVP

Middleware

Web server

Managed 
code 

Backends

Attack The Stack Tech & App Specific  MVP Testing Frameworks

ASVS – Application 
Security Verification 
Standard 
WSTG – Web Security 
Testing Guide 
…



IIS Short Name 
Scanning



WordPress Enumeration



When You Don’t Have 
MVP

• Create one
• It is minimum viable 

• A starting point is better than nothing 

• Dedicate days before the 
engagement to: 
• Build

• Set-up

• Configure

• Break & Hack

• Create CTF challenges ;) 

• Create foundations for future 
hypothesis 



Frameworks to 
help testing

OWASP ASVS



Technology Stacks

It is rarely just a web-server 

Components are typically in-front and behind 

In-front we typically have: 
Reverse Proxies 
Web Application Firewalls 
Caching, Content Delivery Networks 
Load balancers

Behind we typically have: 
Databases, SQL, NoSQL, Key/value and more. 
Files, folders and data
Micro-services
Search Engines 



HTTP is Stateless

In other words, HTTP does not automatically keep track of you

Cookies, server-side, client-side 

Common client-side states involve: 
Json Web Tokens (JWT) 

.NET WebForms

Server-side state are included in most development frameworks: 
PHPSessionID

JSEssionID

.NETSessionID



Methods and Parameters

GET, POST 

Also other methods 
PUT

DELETE

PATCH 

Parameters can be provided as path of URL or in Body

Parameters as part of the Path 
/getUser/:id/

/get/user/1337/?limit=true



EXAMPLE HTTP REQUEST AND REPLY

GET / HTTP/1.1
HOST: WWW.EXAMPLE.COM

USER-AGENT: MOZILLA/5.0 (WINDOWS NT 10.0; WIN64; X64) APPLEWEBKIT/537.36 (KHTML, LIKE

GECKO) CHROME/58.0.3029.110 SAFARI/537.3 
ACCEPT: TEXT/HTML,APPLICATION/XHTML+XML,APPLICATION/XML;Q=0.9,IMAGE/WEBP,*/*;

HTTP/1.1 200 OK 
Date: Wed, 14 Oct 2020 12:28:53 GMT 
Server: Apache/2.4.18 (Ubuntu) 
Last-Modified: Sat, 10 Oct 2020 14:30:00 GMT Content-Length: 612 
Content-Type: text/html; charset=UTF-8 
Content-Encoding: gzip Connection: Closed

<!DOCTYPE html>
 <html> <head> <title>Example Domain</title> </head>
 <body>
 <h1>Example Domain</h1> <p>This domain is for use in illustrative examples in documents. You may use 
this domain in literature without prior coordination or asking for permission.</p>-
 </body> </html>



Parameter Fuzzing Demo



Magic 
Numbers

What if you see a request 
with a number or predictable 
string? 

Don’t just not and accept

Challenge and test 

What happens if we try 
another ID? 

Always require 
authentication, authorization, 
use non-predictable values 



Magic Number Demo



An Alternative to Magic 
Numbers

GUID / UUID - 128-bit number used to uniquely identify information
550e8400-e29b-41d4-a716-446655440000

f47ac10b-58cc-4372-a567-0e02b2c3d479

5f9c0a0c-8d6a-40b4-8bbb-1ba16f1f5e4d

Size and complexity makes them impossible to predict 
Unless they use a predictable seed, e.g. computer systems MAC address, 
time or other non-random factors 

Some UUID implementations focus on uniqueness, not predictability 



Stack Traces

Exposing these stack traces help 
attackers develop a targeted attack

If we don’t expose these, attackers 
are blind…

“But we need them” – developers 
will say…



Error Conditions

Never reveal detailed stack-traces to the user in production

It greatly aids hackers



Good Logging – 5 W, 1 H

We want logs to give the consumers valuable information, including 
security information 

Who, What, Where, When, Why, How 

2023-04-05 14:32:07] - INFO - [Where: User Authentication Module] -
[Who: User ID 12345, IP Address 192.168.1.25] - [What: Login Attempt] 
- [When: 2023-04-05T14:32:07Z] - [How: Standard Login Form] - [Why:
User Initiated Login Process]



Example

INFO - Transaction Completed - [Who: User ID 98765] - [What: Purchase] - [When: 2023-
09-15T14:45:03Z] - [Where: Checkout Page] - [Why: User initiated purchase after adding
items to cart] - [How: Credit Card Payment, Card Type: Visa, Amount: $150.00, Transaction 
ID: 123456789abc]

• Who: User ID 98765. Identifies the specific user who made the transaction.

• What: Purchase. Specifies the action or event, in this case, a completed transaction.

• When: 2023-09-15T14:45:03Z. Provides a precise timestamp of when the transaction 
was completed.

• Where: Checkout Page. Indicates the part of the system or application where the event 
occurred.

• Why: User initiated purchase after adding items to cart. Gives context for the action, 
explaining the user's intention or the cause of the event.

• How: Credit Card Payment, Card Type: Visa, Amount: $150.00, Transaction ID: 
123456789abc. Describes the method of transaction, including payment method, card 
type, amount, and transaction identifier for tracking and verification.



Bad Logging

INFO - User logged out successfully

[2024-02-05 19:15:32] - DEBUG - Button X clicked. 
Color changed to blue. Window resized to 800x600. 
Scroll position updated. User viewed tooltip text.

Error encountered. User=1234 Time=9:15

ERROR: 404 Not Found. 2024-01-05. Page=/home

[2024-01-05 10:05:22] - ERROR - Something went 
wrong

[2023-12-05 09:15:32] - INFO - User Login - Username: 
admin, Password: ExpectCloudyWeather2024!



Headers

HSTS and CSP 

Redirects 

Compression 

Caching 

Vhost 

Content-type 

Authentication requirements 

Server Information and Custom Headers 



Programming 
Languages

Different programming language, same vulnerabilities 

Not always true, and it depends on several factors 
C, C++ - Memory Management Vulnerabilities 

Java – Deserialization (but also in other languages) 

Some languages are strictly typed 

Some languages make it harder to make mistakes 

Robust frameworks can help prevent developers in introducing issues. 



Encoding

Not encryption 

Implies decoding if algorithm is known 
No key involved

Character encodings (e.g., ASCII, UTF-8)

Data serialization formats (e.g., JSON, 
XML)

Content encoding for compression (e.g., 
gzip)

Audio/video encoding (e.g., AAC, H.264)

Image encoding (e.g., JPEG, PNG)



Encryption

Data at Rest vs. Data in Transit

What good is data at rest encryption?

Key Management and Rotation is necessary 

Asymmetric Encryption is strong, but impacts performance

Symmetric Encryption is fast, but key management is challenging



Crypto Demo



Client Side 
vs. 

Server Side

Validation can happen in client-
side

But it must be present on the 
server-side

Client side is for usability and 
performance 

Server side is for integrity and 
security



Common 
Security 
Scanner 
Findings

Why are these a big deal or not?

Crypto/SSL/TLS findings

Missing CSRF, HSTS, Other Best 
Practices

Programming Language 
Unsupported

Application and/or Web Server 
Out-Dated 





Privacy By 
Design

Data Minimization 

End-to-End Encryption 

Anonymization and 
Pseudonymization

Transparency and User Control

Privacy-Enhancing Technologies 
(PETs)

Default Privacy Settings

Privacy Impact Assessments



Kill Chains

Multiple different ones out there

But let us check MITRE ATT&CK



Kill Chains



Understanding Security Vulnerabilities

Section Two



The Fundamentals: 
OWASP TOP 10

A01:2021-Broken Access Control 

A02:2021-Cryptographic Failures 

A03:2021-Injection 

A04:2021-Insecure Design 

A05:2021-Security Misconfiguration 

A06:2021-Vulnerable and Outdated 
Components

A07:2021-Identification and Authentication 
Failures 

A08:2021-Software and Data Integrity Failures 

A09:2021-Security Logging and Monitoring 
Failures

A10:2021-Server-Side Request Forgery

API1:2023 - Broken Object Level Authorization

API2:2023 - Broken Authentication

API3:2023 - Broken Object Property Level 
Authorization

API4:2023 - Unrestricted Resource Consumption

API5:2023 - Broken Function Level Authorization

API6:2023 - Unrestricted Access to Sensitive 
Business Flows

API7:2023 - Server Side Request Forgery

API8:2023 - Security Misconfiguration

API9:2023 - Improper Inventory Management

API10:2023 - Unsafe Consumption of APIs





Injection

What is injection? 

The attacker sends text that exploit 
the syntax of the targeted 
interpreter. 

Any data coming from other 
systems, scripts or especially from 
users should never be trusted 
before proper sanitation is put in 
place.



Let Us Take a 
Closer Look

SQL Injection – Attacking connected 
service 

Cross-Site Scripting (XSS) – Attacking 
users 

Command Injection – Attacking the 
server 



SQL Injection – Just to 
make sure we get it

Query: SELECT * FROM users WHERE username=$name AND password = $pw

Data: 
Userid Username Password

1 Admin 1234admin5678

2 Sylvester stall0wned

3 Arnold Musclemania2024

Username: Admin
Password: 1234admin5678

SELECT * FROM users WHERE username = ‘Admin’
AND password = ‘1234admin5678’

SELECT * FROM users WHERE username = ‘Admin’
AND password = ‘myPassword’ OR 1=1;--’

Injection: 

Username: Admin
Password: myPassword' OR 1=1;--



SQL Injection

We are attacking the QUERY language and the database behind the 
application 

Databases come in many shapes and forms 

Let us demo and walk through 



Cross Site Scripting

Input from users are reflected onto the website, for other users to 
see 

What if this input is not sanitized? 

Could it be misinterpreted as command and markup, not data? 

With XSS we are attacking the USERS of the system

Let us demo this and walk through it



Command Injection

Developers are lazy and can often find use of the operating system to 
help them out

Operating Systems can often execute multiple commands 

What if you can input such an additional command? 

Let us demo and walk through this 



API Weakness 
Examples



API1:2023 -
Broken Object 

Level 
Authorization

• An attacker changes the userID parameter 
in a GET request to access another user's 
personal messages.

• A user modifies the accountID in a banking 
transaction API call to view someone else's 
account balance.

• An API call to retrieve a user's documents 
does not check if the requester has 
permissions for those documents, leading 
to unauthorized access.



API2:2023 -
Broken 

Authentication
An API endpoint allows the use of 
default, weak, or well-known passwords, 
which can be easily guessed.

Session tokens are not rotated after 
login, allowing an attacker to reuse an 
old session token.

An API does not enforce multi-factor 
authentication, allowing an attacker to 
gain access with just stolen credentials.



API3:2023 -
Broken Object 
Property Level 
Authorization

An API returns a JSON object with 
confidential user details when a 
non-admin user requests their 
profile information.

A user is able to retrieve other 
users' email addresses by 
manipulating the response object 
properties.

An endpoint for updating user 
details does not properly check 
properties being updated, 
allowing an attacker to modify 
roles or permissions.



API4:2023 -
Unrestricted 

Resource 
Consumption

An API allows the client to fetch 
all records in a database without 
pagination, causing excessive 
memory use.

A file upload API does not limit 
the size of an upload, allowing an 
attacker to fill the server's disk 
space.

An API endpoint for data 
processing does not have a 
timeout, allowing CPU-intensive 
requests to hog system resources.



API5:2023 -
Broken 

Function 
Level 

Authorization

A non-administrative user is able to access an admin-only API endpoint due 
to improper role checks.

An endpoint for deleting users is accessible by any authenticated user, 
rather than just system administrators.

A regular user can access an API function to grant permissions to other 
users due to missing function-level authorization checks.



API6:2023 -
Unrestricted 

Access to 
Sensitive 

Business Flows

An API that approves credit applications 
does not verify the role of the requester, 
allowing any employee to approve 
applications.

An endpoint that is used to start a batch 
job for financial report generation can be 
triggered by any user in the system.

A payment initiation API does not 
implement proper workflow checks, 
allowing users to bypass normal 
transaction approval processes.



API7:2023 - Server 
Side Request 

Forgery (SSRF)

An API that fetches images from a URL provided by 
the user can be exploited to access internal 
services from the server's perspective.

An API endpoint accepts file paths for logging 
purposes, which can be exploited to access system 
files.

A cloud service API does not sanitize user input for 
URLs, leading to internal metadata services being 
accessed.



API8:2023 -
Security 

Misconfiguration

An API server with verbose error messages exposes stack 
traces that include function names and file paths.

An API endpoint is unintentionally exposed to the public 
due to incorrect security group settings in the cloud.

API keys are stored in a public repository, allowing 
unauthorized users to access the API.



API9:2023 -
Improper 
Inventory 

Managemen

A deprecated version of an API lacking 
current security features is still 
accessible, exposing the system to 
known vulnerabilities.

An organization is unaware that a 
development API endpoint is publicly 
accessible.

A company does not realize that an API 
endpoint with a testing database, 
including real user data, is exposed to 
the internet.



API10:2023 –
API10:2023 - Unsafe 

Consumption of APIs

An application blindly trusts data from an external 
API, leading to cross-site scripting (XSS) 
vulnerabilities.

An app integrates with a third-party API without 
enforcing encryption, allowing data to be 
intercepted in transit.

An external weather API is consumed without rate 
limiting, and the third-party provider experiences a 
breach, leading to a data leak of API request logs.



Principles of 
Security Testing



Preface

• Garbage In – Garbage Out

• Unfortunately, many developers are not defensive

• Chosen to trust data-sources or does not realize which can be 
manipulated 

• Many developers rely on online sources for solving problems

• Developers know about cyber security
• But does not know how to audit, test or realize if their code is vulnerable 



I Did Some Research

GOOGLE 
RESULTS

BOOKS
SCHOOL & 

INSTITUTIONS

COURSES  



• XSS

• Command Injection

• SSRF 

• XXE

• Direct Object references 

• Type juggling 

• File inclusion 

• Template injection 

• Password storage 

• Serialization

• Least amount of privileges

• Xpath injection 

• Cache poisoning 

• CORS

• CSRF

• DOM-based XSS

Imagine We Looked For



Defensive Developers

Ideally, developers should be defensive when coding
What input am I expecting, and how can I ensure it conforms? 
I.e. input sanitization 

Where does it receive input from? 
Don’t trust any source

Database
User
Headers 
Registry / files / whatever 

Always think:
“allow list” before “deny list” 

Gracefully fail, always 



Negative Testing

What Is Your Name?

Input a number

Upload a zip file  



Our Objectives Should Be 
Clear

Identify, Map and Control risk

Confidentially – Ensure sensitive data is only available to authorized 
users 

Integrity – Guarantee data can not be tampered 

Availability – Make sure the application and data is available when 
needed 

Authentication – Verify identity of users and systems 

Authorization – Preserve the fact users should only have access to 
which they have been granted 

Non-repudiation – Prevent users from denying their ations



Types of Security Testing

We’ve got to figure out where and what we want to be doing: 

Penetration Testing – Expert Field 

Vulnerability Scanning – “Anyone can do”

Bug Bounty – You’re on the internet

Auditing – Ask, Interview and Check 

Risk Assessment – Let’s plan it out  



S-SDLC

A Software 
Development Life Cycle 
where we attempt to 
make it Secure 

Keep in mind the word 
lifecycle implies: 

Inception/Development 

Operation/Use

Retirement/Unrollment

Iterative Process



Other Kinds of Tesing

Static Application Security Testing (SAST)
Analyzing source code for vulnerabilities without executing the program.

Dynamic Application Security Testing (DAST)
Analyzing running applications for vulnerabilities.

Interactive Application Security Testing (IAST)
Combines SAST and DAST by testing applications from within using software 
instruments.

Software Composition Analysis (SCA)
Identifying and analyzing open-source components within the software to 
detect vulnerable libraries and licenses.



Test Automation

Via scripts
Unit Tests 

Regression Tests 

Run as part of build workflows 

Recording 
Graphical Testing via Selenium

In-browser recording 

Typically to verify things behave the same after deployments



CI / CD 

Continuous Integration and Continuous 
Deployment (CI/CD): Integrating code into a 
shared repository frequently, with 
automated build and test processes to 
facilitate continuous delivery.

Get automatic feedback on test conditions

Get feedback early, during commits and 
build phases 



DevOps to Support



Scoring Vulnerabilities

Objective vs. Subjective 

CVSS 3.1.1 

CVSS 4



Assessment Questions 

Is this vulnerability due to my code? 

Is it a part of the framework I use? 

Does my code use the vulnerable function? 

Does the vulnerable function accept arbitrary 
input from user?

Does the vulnerability affect my server or my 
users? 

Can a penetration tester actually use this to 
exploit something? 



Snyk Output

Criticality

Widespread win

Quick-wins   

Long tail





Zero Knowledge

No Source Code  

Do Your Best

 Full Knowledge 

 Access to Source Code 

 Logs and telemetry 

 Nomeclature

Training 



Threat 
Modelling

Threat Modelling Can be 
Fun and Learning Exercise 

Help plan out the design 

Automate generation of risk 

Help conclude and 
understand designs attack 
surface 



Performance Testing

Performance Testing: Assessing the 
speed, scalability, and stability of the 
application under various conditions.



Postman

Has collections which can be shared among the team 

Parses OpenAPI/Swagger

Understands GraphQL

Overall is a useful and nice tool 

Has scripting and testing capabilities 



OWASP ZAP

Nice free Attack Proxy for testing web applications

Has a nice site-map feature

Can scan for vulnerabilities 

Allows fuzzing for vulnerabilities 

Chaining of proxies 

WebSocket support  

Good developer support



Burp Suite

Defacto tool by pentester

Strong fuzzing capabilities 

Extension support 

Very flexible and robust 

Well developed scanner 

Spidering engine with good 
SPA support



Where to Learn

Challenges and Experimental Learning 
Burp Suite Academy 
Wechall.net 
Overthewire.org 
APISec University 

Do It Yourself
OWASP Juice Shop  - OWASP Top 10 in realistic environment 
DVWA , DVWS – Damn Vulnerable Web Application/Service 
OWASP DevSlop Pixi – MEAN (Mongo, Express, Angular, Node) Stack 
REST API Goat 
crAPI – Complete Ridicoulus API – OWASP Top 10 Vulnerabilities 
vAPI – OWASP Top 10 exercises 



https://into.bio/chrisdale & https://into.bio/rivsec 

Twitter – https://twitter.com/ChrisADale

LinkedIn – https://www.linkedin.com/in/chrisad/

Fighting Cyber Crime – https://riversecurity.eu 

https://into.bio/chrisdale
https://into.bio/rivsec

	Slide 1
	Slide 2: Who am I?
	Slide 3
	Slide 4: Setting the Stage with Cyber Crime – Who are we up against?
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Cyber Crime and Threat Actors
	Slide 15: Hacking is BIG MONEY
	Slide 16: Personal Data
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Within the Same Week of Hire
	Slide 23
	Slide 24: Attacks for Fun and Profit
	Slide 25: How much is your organization worth? 
	Slide 26
	Slide 27
	Slide 28: Darknet Post 1/2
	Slide 29: Darknet Post 2/2
	Slide 30: A Reminder – This is 14 Years Ago
	Slide 31
	Slide 32: Hackers Manifesto
	Slide 33: What is the Goal of Testing?
	Slide 34: Always Keep In Mind
	Slide 35: Primer on Web
	Slide 36: Typically It’s Not Just A Application
	Slide 37: Components in Play 
	Slide 38: Minimum Viable Penetration Testing
	Slide 39: Tech and Application Specific MVP
	Slide 40: IIS Short Name Scanning
	Slide 41: WordPress Enumeration
	Slide 42: When You Don’t Have MVP
	Slide 43: Frameworks to help testing
	Slide 44: Technology Stacks
	Slide 45: HTTP is Stateless
	Slide 46: Methods and Parameters
	Slide 47: Example HTTP Request and Reply
	Slide 49: Parameter Fuzzing Demo
	Slide 50: Magic Numbers
	Slide 51: Magic Number Demo
	Slide 52: An Alternative to Magic Numbers
	Slide 53: Stack Traces
	Slide 54: Error Conditions
	Slide 55: Good Logging – 5 W, 1 H
	Slide 56: Example
	Slide 57: Bad Logging
	Slide 58: Headers
	Slide 59: Programming Languages
	Slide 60: Encoding
	Slide 61: Encryption
	Slide 62: Crypto Demo
	Slide 63: Client Side vs.  Server Side
	Slide 64: Common Security Scanner Findings
	Slide 65
	Slide 66: Privacy By Design
	Slide 67: Kill Chains
	Slide 68: Kill Chains
	Slide 69
	Slide 70: The Fundamentals:  OWASP TOP 10
	Slide 71
	Slide 72: Injection
	Slide 73: Let Us Take a Closer Look
	Slide 74: SQL Injection – Just to make sure we get it
	Slide 75: SQL Injection
	Slide 76: Cross Site Scripting
	Slide 77: Command Injection
	Slide 78: API Weakness Examples
	Slide 79: API1:2023 - Broken Object Level Authorization
	Slide 80: API2:2023 - Broken Authentication
	Slide 81: API3:2023 - Broken Object Property Level Authorization
	Slide 82: API4:2023 - Unrestricted Resource Consumption
	Slide 83: API5:2023 - Broken Function Level Authorization
	Slide 84: API6:2023 - Unrestricted Access to Sensitive Business Flows
	Slide 85: API7:2023 - Server Side Request Forgery (SSRF)
	Slide 86: API8:2023 - Security Misconfiguration
	Slide 87: API9:2023 - Improper Inventory Managemen
	Slide 88: API10:2023 – API10:2023 - Unsafe Consumption of APIs
	Slide 89
	Slide 90: Preface
	Slide 91: I Did Some Research
	Slide 92: Imagine We Looked For
	Slide 93: Defensive Developers
	Slide 94: Negative Testing
	Slide 95: Our Objectives Should Be Clear
	Slide 96: Types of Security Testing
	Slide 97: S-SDLC
	Slide 98: Other Kinds of Tesing
	Slide 99: Test Automation
	Slide 100: CI / CD 
	Slide 101: DevOps to Support
	Slide 102: Scoring Vulnerabilities
	Slide 103: Assessment Questions 
	Slide 104: Snyk Output
	Slide 105
	Slide 106
	Slide 107: Threat Modelling
	Slide 108: Performance Testing
	Slide 109: Postman
	Slide 110: OWASP ZAP
	Slide 111: Burp Suite
	Slide 112: Where to Learn 
	Slide 113

