
IT’S NOT JUST CHECKLISTS

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

https://portswigger.net/research/top-10-web-hacking-techniques-of-2022

Burp Suite – Tool of choice

Defacto tool by pentester

Strong fuzzing capabilities

Extension support

Very flexible and robust

Well developed scanner

Spidering engine with decent
SPA support

Cheat sheet:
https://www.sans.org/posters
/burp-suite-cheat-sheet/

Burp Extensions

Active Scan ++

Backslash Powered Scanner

Param Miner

Taborator

Turbo Intruder

Autorize

Software Vulnerability Scanner

Collaborator Everywhere

Must have

Nice to have

Honorable Mentions
Freddy, deserialization scanner

GraphQL raider

JSON Web Tokens

NTLM Challenge Decoder

Retire.js

Additional Scanner Checks

Finding Vulnerabilities Process Pyramid
F u l l y t e s t t h e s c o p e , e v e r y s c r i p t a n d i n p u t

Reliable and consistent testing is important, and not relying
on a single individuals' skills and efforts to complete a
penetration test helps ensure the highest levels of standards.

Producing High Value Penetration Tests

Penetration Testing is a team effort, not an individual
effort. Utilize a team to maximize the penetration test
efforts.

Team Based Effort

Leave no stone untouched. Many vulnerabilities are
found in the "paths least travelled". Fully explore!

Thoroughly Map Attack Surface

Document findings, process, discrepancies and
hypothesis. It will be useful now and later.

Reporting

A team is stronger. Produce hypothesis to uncover
potential attacks across all layers. Strengthen the team
knowledge by working as one.

Hypothesis and Knowledge Sharing

Fuzzing

Business
Process and
Logic Flaws

Tools
B

o
tt

o
m

-u
p

 a
p

p
ro

a
ch

T
o

p
-d

o
w

n
 a

p
p

ro
a

ch

Frameworks

Hypothesis & Test Cases

Content Discovery

Goal: Find
Everything

i. Map Browsable Attack Surface

ii. Find Unlinked Content & Params

iii. Repeat for each `Platform
Distinctions` of the application

Content Discovery

Leave no stone unturned. Many vulnerabilities are found in the "paths
least travelled". Fully explore!

Platform
Distinctions

• A web application may
have several “platform
distinctions”
• Load-balancers may

balance on an endpoint
• Reverse proxies does the

same

• Do your best if the target
is split into different
platforms
• Each platform distinction

should receive full test
process

Content Discovery

Map Browsable
Attack Surface

Browse the entire application, discover all browsable
content

Click
Use
Learn

Use the Burp Suite Crawl feature on the top level of the
application.

Has decent support for SPA as of Burp Suite v. >2
Helps build a complete sitemap
Use most complete configuration, which is the slowest

For JavaScript, extract file paths and references.
CyberChef extract file paths module
GAP Burp Plugin
JSParser

Content Discovery

Find Unlinked
Content

• Fuzz verbs and functionality, find additional content
• For functionality such as e.g. /?action=showUser&id=123 , try fuzzing the verb (i.e.

show) with words like:
• Add, delete, update and so on… i.e. making action=addUser, etc.

• Useful wordlists inside of Burp:
• Server-side variable names

• Form field values

• Form Field names

• Use and create wordlists based on target functionality
• Example: A website relevant to PDF’s

grep -aEirh '^pdf.*' * | sort | uniq

Content Discovery

Verb Example
/?page=872

Content Discovery

Content
Discovery

Content Discovery

OpenAPI / Swagger Specs

• If we can cheat, we should!

• Paints a picture of what the developers intended to include

• Still needs to do content discovery

Unlinked
Parameters

• Discover if there are any unlinked
parameters
• Particularly important on all

Platform Distinctions

• Any change based on a new
parameter is interesting

• GET, POST, Cookies, Headers

• Headers might bypass
authentication

• Might find attack surface

• Param miner extension!

Content Discovery

Archive.org
• WaybackRobots.py • WaybackURLs.py

Content Discovery

Fuzzing
Find bytes and input producing

different/unexpected results

Fuzzing Bytes 101

1. For-each script and input
2. Send their script to repeater / play with it in browser

• Determine properly how the functionality works and try
related attack

3. Send to intruder and fuzz
• %00 to %FF

• URL Decode targets Middleware
• URL Encode targets App

• Anomalies, discrepancies, interesting results?
• Create Hypothesis
• Work with team if you cannot produce hypothesis

• Use wordlists

4. Utilize vulnerability scanner
• Backslash Powered Scanner and other extensions will also aid

here.

5. Scanner results? Update methodology

Two Examples
Not a one size fits all, but produces very interesting results

Asdf.asxp produces 500
server error

Bytes Examples
Payload here

A Single Character

Occam’s Razor
Among competing hypothesis, the one with the fewest hypothesis is often correct.

This Photo by Unknown Author is licensed under CC BY

https://blog.aniljohn.com/2013/09/here-be-dragons-ssn-and-federation-user-enrollment.html
https://creativecommons.org/licenses/by/3.0/

Avoiding Rabbit
Holes

• A rabbit hole is: A potential exploit condition which will take up a lot
of time to research.

• Prioritize “width” rather than “depth”
• Focus on rabbit holes with the time left after the scope is covered

• Structure your work scope
• Duration of the engagement / How much time do we have left?

• Hours spent – Work left
• Each hour spent impacts the total value spent on the engagement

• How many scripts, functions and other things do we have left to test?

• Do we need to get someone else to help us conclude a rabbit hole?

• Large applications: split into smaller parts to help team prioritize

Using Wordlists

With our fuzzing efforts, wordlists can help produce valuable results, e.g.,
anomalies in cases of:
• Different results
• Timing impacted
• External server interaction

Use wordlists that help you target technology and hypothesis. Great starting
points:
• SecLists: https://github.com/danielmiessler/SecLists
• AssetNote: https://wordlists.assetnote.io/

Take time to learn what these wordlists contain;
it will help you learn when to apply them

Building Good
Wordlists

DigiNinja’s CeWL
Filter away stop-words

Burp Suite GAP extension

URL Shortners bruteforce results

http_disallowed_entries_CiscoTopMillion

Wiki’s are a good source of wordlist

IIS Short Name
Scanning

Hypothesis and test cases
Be creative and utilize your team.

Test and conclude hypothesizes

Utilize the Team
Pen Testing is a team effort, not an individual effort.

Utilize a team to maximize the penetration test efforts.

Ensure you can work together

If you can’t properly explain and create valid hypothesis
Ask your team

Work together (Knowledge transfer)

Source your rabbit holes to team members

Hypothesis
I am seeing that : > < and * are influencing file

reads of the file server. I want to explore Local File
Inclusion, SSRF and similar kinds of vulnerabilities

Business Process and
Logic Flaws

With extensive knowledge of the target, explore
process and logic flaws

A Quickie on
Authentication

• Technically a part of discovery / scoping / planning
• Pentesting is not a one-size fits all
• Work with the customer to find THEIR needs

• Applications typically have different privileges levels:
• Super Admin
• Customer admin
• User
• Unauthenticated

• Regardless of the scope you have worked through
with your customer, ask for super admin
• Map out everything as super admin, you don’t have to

pentest it, but build overview of functionality

• Make sure customer admin, user and
unauthenticated is secure, and provides segregation

Admin

• Content Discover

• Map out
everything

Regular User

• Privilege
Escalate

• Segregation

Un-
authenticated

• Test all
endpoints

• Test all functions

Map Out
Application Flows

• Mapping out the flow of behavior

• Draw.io / Diagrams.net is easy quick win

• Helps look at things from a bird eye perspective

• Map out requests and response

• Example flows:
• Purchasing

• Authentication

• Impersonation / privilege escalation

• Password reset flow

• …

Frameworks

Frameworks
Compliance and pentest support. Utilize

frameworks.

Minimum Viable
Penetration Testing

Define an absolute minimum of activity to perform on a
certain system or piece of technology or application.

• Allow experience from previous tests to be reused

• A way to support pentesters. Don’t start from scratch.
• Your own refined Google / Hacktricks.xyz / etc.

• Not training on concepts, but simple bullets of what
needs to be done

• Make pentester accountable to:
• Check the things which needs to be checked

• Ask team for help when there are interesting anomalies

• There are application and technology specific MVP’s

Tech and Application
Specific MVP

Middleware

Web server

Managed
code

Backends

Attack The Stack Tech & App Specific MVP Testing Frameworks

ASVS – Application
Security Verification
Standard
WSTG – Web Security
Testing Guide
…

WordPress Enumeration

When You Don’t Have
MVP

• Create one
• It is minimum viable

• A starting point is better than nothing

• Dedicate days before the
engagement to:
• Build

• Set-up

• Configure

• Break & Hack

• Create CTF challenges ;)

• Create foundations for future
hypothesis

Tools

Tools
Vulnerability scanners, application and

technology specific tools

https://into.bio/chrisdale & https://into.bio/rivsec

Download slides here!

Twitter – https://twitter.com/ChrisADale

LinkedIn – https://www.linkedin.com/in/chrisad/

Fighting Cyber Crime – https://riversecurity.eu

💞Work with us! We ARE hiring by attitude, and train for talents 🧠

https://into.bio/chrisdale
https://into.bio/rivsec

	Default Section
	Slide 1: Reconnaissance and Web Application Penetration Testing
	Slide 2: Who am I?
	Slide 3: Why This Talk?
	Slide 4: Portswigger Top 10 Attacks
	Slide 5: Burp Suite – Tool of choice
	Slide 6: Burp Extensions
	Slide 7
	Slide 8: Goal: Find Everything
	Slide 9: Platform Distinctions
	Slide 10: Map Browsable Attack Surface
	Slide 11: Find Unlinked Content
	Slide 12: Verb Example /?page=872

	Untitled Section
	Slide 13: Content Discovery
	Slide 14: OpenAPI / Swagger Specs
	Slide 15: Unlinked Parameters
	Slide 16: Archive.org
	Slide 17: Fuzzing
	Slide 18: Fuzzing Bytes 101
	Slide 19: Two Examples
	Slide 20: Asdf.asxp produces 500 server error
	Slide 21: Bytes Examples
	Slide 22
	Slide 23: A Single Character
	Slide 24: Occam’s Razor
	Slide 25: Avoiding Rabbit Holes
	Slide 26: Using Wordlists
	Slide 27: Building Good Wordlists
	Slide 28: IIS Short Name Scanning
	Slide 29: Hypothesis and test cases
	Slide 30: Utilize the Team
	Slide 31: Business Process and Logic Flaws
	Slide 32: A Quickie on Authentication
	Slide 33: Map Out Application Flows
	Slide 34: Frameworks
	Slide 35: Minimum Viable Penetration Testing
	Slide 36: Tech and Application Specific MVP
	Slide 37: WordPress Enumeration
	Slide 38: When You Don’t Have MVP
	Slide 39: Tools
	Slide 40

